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electronic states suggests that to some extent, correlation ef­
fects may be estimated from formaldehyde and ethylene. That 
is, the relative energy of the ground state should be shifted 
downward, while the ir -»• IT* states should be shifted at least 
slightly upward. 
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with and without sulfur ir bonding and comparing the energy 
change with that obtained for thiophene. All calculations are 
done on an sp and spd basis by use of the CNDO/S procedure.3 

The conjugative stabilization energy is 94 (sp) and 138 (spd) 
kcal/mol for 1, whereas 33 (sp) and 49 (spd) kcal/mol were 
predicted for thiophene.8b It is interesting to note that, ac­
cordingly, 1 is expected to be more "aromatic" than two 
thiophene molecules. A corresponding effect is detected in the 
magnitude of charge transfer from the two sulfur atoms to the 
carbon skeleton. It amounts to 0.72 (sp) and 0.66 e (spd) and 
is thus appreciably higher than for two thiophenes molecules 
(for one molecule: 0.22 (sp) and 0.16 e (spd)8b). From these 
data it appears that the d AO's in 1 play, just as in thiophene, 
no important role (as far as the ground state is concerned). The 
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Figure 1. Photoelectron spectrum of tetraphenylthieno[3,4-c]thiophene 
with assignments. The numbers associated with each band refer to vertical 
ionization potentials in electron volts. 

aforementioned extra effects (stabilization and charge trans­
fer) will be rationalized in the next section. 

An interesting point can be made from the uv PE spectrum 
of 2, which is depicted in Figure 1. Bands 1 and 2 are TT ion­
izations resulting from the thienothiophene central ring system, 
whereas the broad and intense ionization region 3 contains the 
third thienothiophene event and eight phenyl TT events. The 
ordering of CNDO/S Koopmans9 and improved10 (by ex­
tensive configuration interaction including singly and doubly 
excited configurations as specified elsewhere10b and up to a 
perturbative limit of 0.002 eV) ion states comes out as 2AU, 
5B2U, and 2B l g for 1. The low-lying 2A11 state (6.19 eV for 2) 
and thus high-lying au orbital as compared to their counter­
parts in naphthalene (8.15 eV11) is a focal point of interest to 
be rationalized in the next section. 

2 is known7 to possess a rather low-lying electronically ex­
cited molecular singlet state at 2.24 eV (maximum of the 
corresponding intense visible band in 1,2-dichloroethane so­
lution). Our CNDO/S CI3 calculations yield the state energies 
(with oscillator strengths of corresponding transitions greater 
than 0.001) for 1: 'B3u (aub3g*) 2.79 (0.43), 1B111 (b2ub3g*) 
3.68 (0.11), B,u (aubig*) 5.24 (0.44). The low-lying 1B311 state 
is a consequence of the high-lying au HOMO as stated above. 
This factor in connection with the appropriate symmetry and 
topology of this orbital as depicted in the next section further 
helps to explain the strong tendency of dienophilic reagents to 
add to thel,3-positions of 2.2'7 

Rationalization of Results 
Figure 2 presents a calculated orbital interaction diagram 

for l.8a'b On the left are the basis orbitals of the carbon skele­
ton, on the right those of the two sulfur atoms, and in the 
middle their allowed combinations. The sulfur b2u/carbon 
skeleton b2u* orbital interaction corresponds to the well-known 
stabilizing and charge transferring interaction between the bi* 
orbital of cis- butadiene and the sulfur pz orbital (for a repre­
sentation of these orbital see 3 below). Based on the data ob-

© 

3 

tained (i.e., orbital energies of the interacting subunits in either 
the thiophene or thienothiophene cases and the x atomic orbital 
coefficients on the centers that are involved in the bonding 
process between the respective subunits), larger effects12 than 

Figure 2. Calculated orbital interaction diagram of the carbon skeleton 
orbitals (on left) of thieno[3,4-c]thiophene and the sulfur 7r lone pair 
combinations (on right) for this system. The dashes across the C-S bonds 
symbolize interruption of x bonding. The fat solid lines draw attention to 
the crossing of the au* and b3g orbitals leading to the au HOMO and b3g* 
LUMO orbitals of the cyclic conjugated system. The dashed level of 1 
indicates the hypothetical location13 of the b3g orbital and the black arrow 
the gain in orbital energy per electron due to the aforementioned orbital 
crossing. 

for thiophene are not anticipated. The extra charge transfer 
and extra stabilization found for 1 and mentioned in the pre­
ceding section originates from the sulfur b3g/carbon skeleton 
b3g interaction via a subsequent crossing of the resulting b3g 
combination orbital with the carbon skeleton au* orbital. The 
filled b3g combination is expected to be located at about —5 
eV13 (represented by the dashed level in Figure 2). Thus, by 
emptying it and filling the two electrons into the au* (leading 
to the au orbital of 1) level the system gains roughly 4 eV13 of 
orbital energy (2 eV for each electron involved, represented 
by a black arrow in Figure 2) and additional charge accumu­
lates on the 1,3-positions. 

The high energy of the au HOMO when referenced against 
its counterpart in naphthalene is a consequence of the missing 
stabilization from the TT* orbitals of the ethylene units bridging 
the carbon skeleton in naphthalene. In 1, the au orbital can only 
experience less effective d orbital stabilization (for a repre­
sentation of the two HOMO's see 4 and 5 below, note especially 

» OO 
4 5 

the two bridging ethylenic TT* subunit orbitals in 5). As men­
tioned above it is this HOMO with correct symmetry and high 
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coefficients in the 1,3 positions which makes the thienothio-
phenes good donor molecules for dienophilic reagents. 

To summarize, the thienothiophenes are "aromatic" com­
pounds like thiophene. Their high reactivity with respect to 
1,3-additions follows from the HOMO energy and structure, 
as revealed by photoelectron spectroscopy. Thus, the hitherto 
unavailability of 1 appears to be a consequence of its high re­
activity and not of its instability and 2 may be isolable because 
of a somewhat damped reactivity due to steric interference by 
the 1,3-phenyl substituents. Strictly speaking, these compounds 
are "nonclassical" only from the point of view of formal defi­
nition and representation. 
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served.8 With substitution on the ring, the degenerate e2U(7r*) 
orbital splits into bi(ir*) and a2(ir*) orbitals.9 This splitting 

O7(V) b, (ir*) 

is particularly evident in the transmission spectrum of phenol. 
Similar results were found in aniline and anisole and the 
spectra are not shown. As shown below, the a2(ir*) orbital has 
nodes on the 1 and 4 carbons, while the bi(7r*) orbital does not 
possess nodes on any of the carbons. 

The -NH2, -OH, and -OCH3 groups have small positive 
inductive effects10 (which stabilize both A2 and Bi anion 
states) and large negative resonance effects10 (which desta­
bilize the Bi state). We expect, therefore, that the ground state 
anions of aniline, phenol, and anisole will be slightly more 
stable than the ground state of CgHg- and will be of A2 sym­
metry. On the other hand, the second anion states denoted by 
A2Bi should lie well above the CgHg- ground state. The 
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